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1 Mechanics 机机
1.1 Underactuator system 机机机机机
• Russ Tedrake. Underactuated Robotics: Algorithms for Walking, Running,Swimming, Flying, and

Manipulation (Course Notes for MIT 6.832). Downloaded from http://underactuated.mit.edu/

According to Newton, the dynamics of mechanical systems are second order(𝐹 = 𝑚𝑎). Their state is
geiven by a vector of positions, 𝒒 (also known as the configuration vector), and a vector of velocities,
̇𝒒, and (possibly) time. The general form for a second-order control dynamical systems is

̈𝒒 = 𝑓(𝒒, ̇𝒒, 𝒖, 𝑡) (1)

where 𝒖 is the control vector.

The second-order control differential equation ̈𝒒 = 𝑓(𝒒, ̇𝒒, 𝒖, 𝑡) is fully actuate in state 𝒙 = (𝒒, ̇𝒒)
and time 𝑡 if the resulting map 𝑓  is surjective(机机): for every ̈𝒒 there exists a 𝒖 which produces the
desired response. Otherwise it is underactuated(in 𝒙 at time t)

1.2 Homonomic Systems and Nonholonomic Systems 机机机机机机机机机机机机
• https://www.zhihu.com/question/26411115
• https://physics.stackexchange.com/questions/409951/what-are-holonomic-and-non-holonomic-

constraints

Consider a mechanical system with 𝑛 generalized coordinates 𝑞 subject to 𝑚 bilateral(机机机)
constraints whose equations of motion are described by

𝑀(𝑞) ̈𝑞 + 𝑉 (𝑞, ̇𝑞) = 𝐸(𝑞)𝜏 − 𝐴𝑇(𝑞)𝜆 (2)

where 𝑀(𝑞) is the 𝑛 × 𝑛 inertia matrix, 𝑉 (𝑞, ̇𝑞) is the vector of position and velocity dependent
forces, 𝐸(𝑞) is the 𝑛 × 𝑟 input transformation matrix, 𝜏  is the 𝑟-dimensional inpyt vector, 𝑄(𝑞) is
the 𝑚× 𝑛 Jacobian matrix, and 𝜆 is the vector of constraint forces. The 𝑚 constraint equations of
the mechanical system can be written in the form

𝐶(𝑞, ̇𝑞) = 0 (3)

If a constraint equation is in the form 𝐶𝑖(𝑞) = 0, or can be integrated into this form, it is a holonomic
constraint. Otherwise it is a kinematix(not geometric) constaint and is termed nonholonomic.

“机机”机“机机机”机机机机机机机机机机机 机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机机

2 Order Linear Differential Equations
• “https://www.sfu.ca/math-coursenotes/Math%20158%20Course%20Notes/chap_DifferentialEquatio

ns.html

2.1 Homogeneity of a Linear DE
Given a linear differential equation

𝐹𝑛(𝑥)
𝑑𝑛𝑦
𝑑𝑥𝑛

+ 𝐹𝑛−1(𝑥)
𝑑𝑛−1𝑦
𝑑𝑥𝑛−1

+…+ 𝐹2(𝑥)
𝑑2𝑦
𝑑𝑥2

+ 𝐹1(𝑥)
𝑑𝑦
𝑑𝑥
+ 𝐹0(𝑥)𝑦 = 𝐺(𝑥) (4)

where 𝐹𝑖(𝑥) and 𝐺(𝑥) are functions of 𝑥, the differential equation is said to be homogeneous if
𝐺(𝑥) = 0 and non-homogeneous otherwise.

Note: One implication of this definition is that 𝑦 = 0 is a constant solution to a linear homogeneous
differential equation, but not for the non-homogeneous case.

http://underactuated.mit.edu/
https://www.zhihu.com/question/26411115
https://physics.stackexchange.com/questions/409951/what-are-holonomic-and-non-holonomic-constraints
https://physics.stackexchange.com/questions/409951/what-are-holonomic-and-non-holonomic-constraints
https://www.sfu.ca/math-coursenotes/Math%20158%20Course%20Notes/chap_DifferentialEquations.html
https://www.sfu.ca/math-coursenotes/Math%20158%20Course%20Notes/chap_DifferentialEquations.html
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2.2 First Order Linear Differential Equations
Given a first order non-homogeneous linear differential equation

𝑦′ + 𝑝(𝑡)𝑦 = 𝑓(𝑡) (5)

using variation of parameters the general solution is given by

𝑦(𝑡) = 𝑣(𝑡)𝑒𝑃(𝑡) +𝐴𝑒𝑃(𝑡) (6)

where 𝑣′(𝑡) = 𝑒−𝑃(𝑡)𝑓(𝑡) and 𝑃(𝑡) is an antiderivative of −𝑝(𝑡)

2.3 Numerical methods for ode
The closed-loop control system is usually written as

̇𝑥 = 𝑓(𝑡, 𝑥). (7)

To verify the control performance, several numerical method is important.

• https://www.math.hkust.edu.hk/~machas/numerical-methods-for-engineers.pdf

2.3.1 Euler method – First Order
𝑥𝑛+1 = 𝑥𝑛 +Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) (8)

For small enough Δ𝑡, the numerical solution should converge to the exact solution of the ode, when
such a solution exists. The Euler Method has a local error, that is, the error incurred over a single
time step, of 𝑂(Δ𝑡2). The global error, however, comes from integrating out to a time 𝑇 . If this
integration takes 𝑁  time steps, then the global error is the sum of 𝑁  local errors. Since 𝑁 = 𝑇

∆𝑡 , the
global error is given by 𝑂(∆𝑡), and it is customary to call the Euler Method a first-order method.

2.3.2 Modified Euler,Heun’s method,predictor-corrector method – Second Order
𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) 𝑘2 = Δ𝑡𝑓(𝑡𝑛 +Δ𝑡, 𝑥𝑛 + 𝑘1)

𝑥𝑛+1 = 𝑥𝑛 +
1
2
(𝑘1 + 𝑘2)

(9)

2.3.3 Runge-Kutta methods
First, we compute the Taylor series for 𝑥𝑛+1 directly:

𝑥𝑛+1 = 𝑥(𝑡𝑛 +Δ𝑡) = 𝑥(𝑡𝑛) + Δ𝑡 ̇𝑥(𝑡𝑛) +
1
2
(Δ𝑡)2 ̈𝑥(𝑡𝑛) + 𝑂(Δ𝑡3) (10)

Now, ̇𝑥(𝑡𝑛) = 𝑓(𝑡𝑛, 𝑥𝑛). The second derivative is more tricky and requires partial derivatives. We
have

̈𝑥(𝑡𝑛) =
𝑑
𝑑𝑡
𝑓(𝑡, 𝑥(𝑡))|

𝑡=𝑡𝑛

= 𝑓𝑡(𝑡𝑛, 𝑥𝑛) + ̇𝑥(𝑡𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛) = 𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛, 𝑥𝑛)(11)

Putting all the terms together, we obtain

𝑥𝑛+1 = 𝑥𝑛 +Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) +
1
2
(Δ𝑡)2(𝑓𝑡(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛, 𝑥𝑛) + 𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛,𝑥𝑛)) + 𝑂(Δ𝑡

3)(12)

Second, we compute the Taylor series for 𝑥𝑛+1 from the Runge-Kutta formula. We start with

𝑥𝑛+1 = 𝑥𝑛 + 𝑎Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) + 𝑏Δ𝑡𝑓(𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛)) + 𝑂(Δ𝑡3) (13)

and the Taylor series that we need is

https://www.math.hkust.edu.hk/~machas/numerical-methods-for-engineers.pdf
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𝑓(𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛))

= 𝑓(𝑡𝑛, 𝑥𝑛) + 𝛼Δ𝑡𝑓𝑡(𝑡𝑛,𝑥𝑛) + 𝛽Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛,𝑥𝑛) +𝑂(Δ𝑡
2)

(14)

The Taylor-series for 𝑥𝑛+1 from the Runge-Kutta method is therefore given by

𝑥𝑛+1 = 𝑥𝑛 + (𝑎 + 𝑏)Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) + (Δ𝑡)
2(𝛼𝑏𝑓𝑡(𝑡𝑛,𝑥𝑛) + 𝛽𝑏𝑓(𝑡𝑛, 𝑥𝑛)𝑓𝑥(𝑡𝑛,𝑥𝑛)) + 𝑂(Δ𝑡

3) (15)

Comparing (12) and (15), we find three constraints for the four constants.

𝑎 + 𝑏 = 1, 𝛼𝑏 = 1/2, 𝛽𝑏 = 1/2 (16)

2.3.4 Second-order Runge-Kutta methods
The family of second-order Runge-Kutta methods that solve ̇𝑥 = 𝑓(𝑡, 𝑥) is given by

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛), 𝑘2 = Δ𝑡(𝑓𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽𝑘1),
𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑘1 + 𝑏𝑘2

(17)

where we have derived three constraints for the four constants 𝛼,𝛽,𝑎 and 𝑏:

𝑎 + 𝑏 = 1, 𝛼𝑏 =
1
2
, 𝛽𝑏 =

1
2

(18)

The modified Euler method corresponds to 𝛼 = 𝛽 = 1 and 𝑎 = 𝑏 = 1
2 . The function 𝑓(𝑡, 𝑥) is

evaluated at the times 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛 +Δ𝑡.

The midpoint method corresponds to 𝛼 = 𝛽 = 1
2 , 𝑎 = 0 and 𝑏 = 1. In this method, the function

𝑓(𝑡, 𝑥) is evaluated at the times 𝑡 = 𝑡𝑛 and 𝑡 = 𝑡𝑛 +Δ𝑡/2 and we have

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛) 𝑘2 = Δ𝑡𝑓(𝑡𝑛 +
1
2
Δ𝑡, 𝑥𝑛 +

1
2
𝑘1),

𝑥𝑛+1 = 𝑥𝑛 + 𝑘2
(19)

2.3.5 Higher Order Runge-Kutta methods
Higher-order Runge-Kutta methods can also be derived, but require substantially more algebra. For
example, the general form of the third-order method is given by

𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛),
𝑘2 = Δ𝑡𝑓(𝑡𝑛 + 𝛼Δ𝑡, 𝑥𝑛 + 𝛽𝑘1),
𝑘3 = Δ𝑡𝑓(𝑡𝑛 + 𝛾Δ𝑡, 𝑥𝑛 + 𝛿𝑘1 + 𝜀𝑘2),

𝑥𝑛+1 = 𝑥𝑛 + 𝑎𝑘1 + 𝑏𝑘2 + 𝑐𝑘3

(20)

with constraints 𝛼,𝛽,𝛾,𝛿,𝜖,𝑎,𝑏 and 𝑐. The foutth-order method has stages 𝑘1,𝑘2,𝑘3 and 𝑘4. The fifth-
order methood requires at least six stages. The table below gives the order of the method and the
minimum number of stages required.

order 2 3 4 5 6 7 8
minimum #stage 2 3 4 6 7 9 11

Because the fifth-order method requires two more stages than the fourth-order method, the fourth-
order method has found some popularity. The general fouth-order method with four stages has 13
constants and 11 constraints. A particularly simple fourth-order method that has been widely used
in the past by physicsts ig given by
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𝑘1 = Δ𝑡𝑓(𝑡𝑛, 𝑥𝑛), 𝑘2 = Δ𝑡𝑓(𝑡𝑛 +
1
2
Δ𝑡, 𝑥𝑛 +

1
2
𝑘1),

𝑘3 = Δ𝑡𝑓(𝑡𝑛 +
1
2
Δ𝑡, 𝑥𝑛 +

1
2
𝑘2), 𝑘4 = Δ𝑡𝑓(𝑡𝑛 +Δ𝑡, 𝑥𝑛 + 𝑘3);

(21)

𝑥𝑛+1 = 𝑥𝑛 +
1
6
(𝑘1 + 2𝑘2 + 2𝑘3 + 𝑘4) (22)

2.3.6 Adaptive Runge-Kutta methods
An adaptive ode solver automatically finds the best integration step-size Δ𝑡 at each time step. The
Dormand-Prince method, which is implemented in MATLAB’s most widely used solver,
[t,y,te,ye,ie] = ode45(odefun,tspan,y0,options), determines the step size by comparing the
results of fourth- and fifth- order Runge-Kutta methods. This solver requires six function evaluations
per time step, and saves computational time by constructing both fourth- and fifth-order methods
using the same function evaluation’s.

2.3.7 stiff ODE
• https://ww2.mathworks.cn/help/matlab/math/solve-stiff-odes.html?lang=en

For some ODE problems, the step size taken by the solver is forced down to an unreasonably small
level in comparison to the interval of integration, even in a region where the solution curve is
smooth. These step sizes can be so small that traversing a short time interval might require
millions of evaluations. This can lead to the solver failing the integration, but even if it succeeds it
will take a very long time to do so.

Equations that cause this behavior in ODE solvers are said to be stiff. The problem that stiff ODEs
pose is that explicit solvers (such as ode45) are untenably slow in achieving a solution. This is why
ode45 is classified as a nonstiff solver along with ode23, ode78, ode89, and ode113.

Solvers that are designed for stiff ODEs, known as stiff solvers, typically do more work per step. The
pay-off is that they are able to take much larger steps, and have improved numerical stability
compared to the nonstiff solvers.

https://ww2.mathworks.cn/help/matlab/ref/ode45.html?lang=en
https://ww2.mathworks.cn/help/matlab/math/solve-stiff-odes.html?lang=en
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3 Topological Space
• 机机机 http://staff.ustc.edu.cn/~wangzuoq/Courses/22S-Topology/

3.1 Metic Space

Definition 3.1.1 :  A metric space (𝑀, 𝑑) consists of a set 𝑀  and a mapping, called distance, 𝑑 :
𝑀 ×𝑀 → ℝ, which satisfies the following:
1. 0 ≤ 𝑑(𝑥, 𝑦) < ∞,∀𝑥, 𝑦 ∈ 𝑀
2. 𝑑(𝑥, 𝑦) = 0, if and only if 𝑥 = 𝑦
3. 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)
4. Triangle Inequality: 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑥, 𝑧), 𝑥, 𝑦, 𝑧 ∈ 𝑀

Definition 3.1.2 :  Let 𝑉  be a vector space, if there exists a mapping ‖⋅‖ : 𝑉 → ℝ, satisfying
1. ‖⋅‖ ≥ 0, ∀𝑥 ∈ 𝑉  and ‖𝑥‖ = 0, if and only if 𝑥 = 0
2. ‖𝑟𝑥‖ = |𝑟|‖𝑥‖, 𝑟 ∈ ℝ, 𝑥 ∈ 𝑉
3. Triangle Inequality: ‖𝑥 + 𝑦‖ ≤ ‖𝑥‖ + ‖𝑦‖, 𝑥, 𝑦 ∈ 𝑉

Then (𝑀, ‖⋅‖) is called a normed space, and ‖𝑥‖ is called the norm of 𝑥

Definition 3.1.3 :  Given a vector space 𝑉 . If there exists a mapping ⟨⋅, ⋅⟩ : 𝑉 × 𝑉 → ℂ, satisfies
the following requirements:
1. ⟨𝑥, 𝑥⟩ ≥ 0, ∀𝑥 ∈ 𝑉 . Moreover, ⟨𝑥, 𝑥⟩ = 0, if and only if 𝑥 = 0
2. ⟨𝑥, 𝑦⟩ = ⟨𝑦, 𝑥⟩, 𝑥, 𝑦 ∈ 𝑉
3. ⟨𝑎𝑥 + 𝑏𝑦, 𝑧⟩ = 𝑎⟨𝑥, 𝑧⟩ + 𝑏⟨𝑦, 𝑧⟩, 𝑥, 𝑦, 𝑧 ∈ 𝑉 , 𝑎, 𝑏 ∈ ℂ

Then (𝑉 , ⟨⋅, ⋅⟩) is called an inner product space, and ⟨𝑥, 𝑦⟩ is called the inner product of 𝑥, 𝑦

Proposition 3.1.1 :
1. Let 𝑉  be an inner product space. Define a norm on 𝑉  as ‖𝑥‖ = √⟨𝑥, 𝑥⟩ Then 𝑉  becomes a

normed space. Such a norm is called the norm induced by the inner product
2. Let 𝑀  be a normed space. Define a distance 𝑑 as 𝑑(𝑥, 𝑦) = ‖𝑥 − 𝑦‖, Then 𝑀  becomes a

metric space.

Definition 3.1.4 :  A metric space 𝑀  is complete if each Cauchy sequence {𝑥𝑛} converges to a
point 𝑥 ∈ 𝑀 .

3.2 Topological Spaces

http://staff.ustc.edu.cn/~wangzuoq/Courses/22S-Topology/
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Definition 3.2.1 :  Given a set 𝑋 and a set of its subsets 𝒯.
1. (𝑋,𝒯) is called a topological space, if 𝒯 satisfies the following

1. 𝑋 ∈ 𝒯, ∅ ∈ 𝒯;
2. If 𝑈𝜆 ∈ 𝒯,∀𝜆 ∈ Λ ⊂ ℝ, then ∪𝜆∈Λ 𝑈𝜆 ∈ 𝒯;
3. If 𝑈𝑖 ∈ 𝒯, 𝑖 = 1,…, 𝑛, then ∩𝑛𝑖=1 𝑈𝑖 ∈ 𝒯

2. An element in 𝑈 ∈ 𝒯 is called an open set. Its complement,denoted by 𝑈𝑐 is called a closed set.
3. For a point 𝑥 ∈ 𝑋, a subset 𝑁  is called a neighborhood of 𝑥 if there exists an open set 𝑈  such

that 𝑥 ∈ 𝑈 ⊂ 𝑁
4. Let ℬ ⊂ 𝒯. ℬ is a topological basis if any element 𝑈 ∈ 𝒯 can be expressed as a union of some

elements in ℬ
5. A set of neighborhoods 𝒩 ⊂ 𝒯 is called a neighborhood basis of 𝑥 if for any neighborhood 𝑁

of 𝑥, there is an 𝑁0 ∈ 𝒩, such that 𝑁0 ⊂ 𝑁

3.3 Continuous Mapping

Definition 3.3.1 :  Let 𝑀 , 𝑁  be two topological spaces. A mapping 𝜋 : 𝑀 → 𝑁  is continuous, if
one of the following two equivalent conditions holds:

• For any 𝑈 ⊂ 𝑁  open, its inverse image

𝜋−1(𝑈) ≔ {𝑥 ∈ 𝑀 | 𝜋(𝑥) ∈ 𝑈} (23)

is open
• For any 𝐶 ⊂ 𝑁  closed, its inverse image 𝜋−1(𝐶) is closed

Note: the two conditions are equivalent.

Definition 3.3.2 :  Let 𝑀 ,𝑁  be two topological spaces. 𝑀  and 𝑁  are said to be homeomorphic(机机
pei 机机) if there exists a mapping 𝜋 : 𝑀 → 𝑁 , which is
1. one-to-one( 机机 injective),
2. onto(机机 surjective)
3. and continuous (both 𝜋 and 𝜋−1 are continuous).

𝜋 is called a homeomorphism.

Note: If a mapping is both injective and surjective it is said to bijective(机机).

Definition 3.3.3 :  Given a topological space 𝑀 .
1. A set 𝑈 ⊂ 𝑀  is said to be clopen if it is both closed and open. A topological space(机机机机), 𝑀 , is

said to be connected if the only two clopen sets are 𝑀  and ∅
2. A continuous mapping 𝜋 : 𝐼 = [0, 1] → 𝑀  is called a path on 𝑀 . 𝑀  is said to be pathwise(or

arcwise) connected if for any two points 𝑥, 𝑦 ∈ 𝑀  there exists a path, 𝜋, such that 𝜋(0) = 𝑥
and 𝜋(1) = 𝑦

Tip on open and closed set: As described by topologist James Munkres, unlike a door, “a set can be
open, or closed, or both, or neither!” https://en.wikipedia.org/wiki/Clopen_set A set is closed if its
complement is open. But A set can be closed or open if its complement is closed.
https://en.wikipedia.org/wiki/Open_set
A subset 𝑈  of a metric space (𝑀, 𝑑) is called open if, for any point 𝑥 in 𝑈 , there exists a real number

https://en.wikipedia.org/wiki/Clopen_set
https://en.wikipedia.org/wiki/Open_set
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𝜀 such that any point 𝑦 ∈ 𝑀  satisfying 𝑑(𝑥, 𝑦) < 𝜀 belongs to 𝑈 . Equivalently, 𝑈  is open if every
point in 𝑈  has a neighborhood contained in 𝑈 .

Note: ℝ is connected and A pathwise connected space 𝑀  is connected while the converse is
incorrect.

Definition 3.3.4 :  A topological space 𝑀  is said to be locally connected at 𝑥 ∈ 𝑀  if every
neighborhood 𝑁𝑥 of 𝑥 contains a connected neighborhood 𝑈𝑥, i.e., 𝑥 ∈ 𝑈𝑥 ⊂ 𝑁𝑥. 𝑀  is said to be
locally connected if it is locally connected at each 𝑥 ∈ 𝑀

local connectedness does not imply connectedness (hence no pathwise connectedness); conversely,
pathwise connectedness (connectedness) does not imply local connectedness.

Definition 3.3.5 :  Let {𝑈𝜆|𝜆 ∈ Λ} be a set of open sets in 𝑀 . The set is called an open covering of
𝑀  if

⋃
𝜆∈Λ

𝑈𝜆 ⊃ 𝑀. (24)

𝑀  is said to be a compact space if every open covering has a finite sub-covering, i.e., there exists a
finite subset {𝑈𝜆𝑖 | 𝑖 = 1, 2,…, 𝑘} such that

⋃
𝑘

𝑖=1
𝑈𝜆𝑖 ⊃ 𝑀 (25)

From Calculus we know that with the conventional topology, a set, 𝑈 ⊂ ℝ𝑛 is compact, if and only
if it is bounded and closed. Unfortunately, it is not true for general metric spaces.

Definition 3.3.6 :  In a topological space, 𝑀 , a sequence {𝑥𝑘} is said to converge to 𝑥, if for any
neighborhood 𝑈 ∋ 𝑥 there exists a positive integer 𝑁 > 0 such that when 𝑛 > 𝑁 , 𝑥𝑛 ∈ 𝑈 .

1. Impose the discrete topology on ℝ1. i.e., each point is an open set. Then 𝑥𝑘 converges to nowhere.
Because it can never get into any {𝑟}, which is a neighborood of 𝑟

Proposition 3.3.1 :  Let 𝑀 , 𝑁  be two topological spaces. 𝑀  is first countable. 𝑓 : 𝑀 → 𝑁  is
continuous, if and only if for each 𝑥𝑘 → 𝑥, 𝑓(𝑥𝑘) → 𝑓(𝑥)

Definition 3.3.7 :  A topological space is called sequentially compact if every sequence contains a
convergent subsequence.

Definition 3.3.8 :  (Bolzano-Weierstrass) Let 𝑀  be a first countable topological space. if 𝑀  is
compact, it is sequentially compact.

3.4 Quotient Spaces
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Definition 3.4.1 :  Let 𝑆 be any set and ∼ be a relation between two elements of 𝑆. ∼ is said to be
an equivalent relation if
1. 𝑥 ∼ 𝑥
2. If 𝑥 ∼ 𝑦, then 𝑦 ∼ 𝑥
3. If 𝑥 ∼ 𝑦, and 𝑦 ∼ 𝑧, then 𝑥 ∼ 𝑧

Definition 3.4.2 :  Let M be a topological space, “∼” an equivalent relation on 𝑀

4 Differentiable Manifold
4.1 Structure of Manifolds

Definition 4.1.1 :  Let (𝑀,𝒯) be a second coutable, 𝑇2(Hausdorff) topological space. 𝑀  is called
an 𝑛 dimensional topological manifold if there exists a subset 𝒜 = {𝐴𝜆 | 𝜆 ∈ Λ} ⊂ 𝒯, such that
1. ⋃𝜆∈Λ𝐴𝜆 ⊃ 𝑀 ;
2. For each 𝑈 ∈ 𝒜 there exists a homeomorphism 𝜑 : 𝑈 → 𝜑(𝑈) ⊂ ℝ𝑛, which is called a

coordinate chart, denoted by (𝑈, 𝜑).
3. Moreover, if for two coordinate charts: (𝑈, 𝜑) and (𝑉 ,Ψ), if 𝑈 ∩ 𝑉  is not empty, then both
Ψ⚬𝜑−1 : 𝜑(𝑈 ∩ 𝑉 ) → Ψ(𝑈 ∩ 𝑉 ) and 𝜑⚬Ψ−1 : Ψ(𝑈 ∩ 𝑉 ) → 𝜑(𝑈 ∩ 𝑉 ) are 𝐶𝑟(𝐶∞,𝐶𝜔). such
two coordinate charts are said to be consistent.

4. If a coordinate chart, 𝑊 , is consistent with all charts in 𝒜, then 𝑊 ∈ 𝒜.

Then (𝑀,𝒯) is called a 𝐶𝑟(𝐶∞, analytic, respectively) differentiable manifold.

Definition 4.1.2 :  Let 𝑀 ,𝑁  be two 𝐶𝑟 manifolds with dimensions 𝑚,𝑛 respectively. 𝐹 : 𝑀 → 𝑁
is called a 𝐶𝑟 mapping, if for each 𝑥 ∈ 𝑀  and 𝑦 = 𝐹(𝑥) ∈ 𝑁  there are coordinate charts (𝑈, 𝜑)
about 𝑥 and (𝑉 , 𝜓) about y, such that

𝐹 = 𝜓⚬𝐹⚬𝜑−1 (26)

4.2 Fiber Bundle

4.3 Vector Field

4.4 One Parameter Group

4.5 Lie Algebra of Vector Fields

4.6 Co-tangent Space

4.7 Lie Derivatives

4.8 Frobenius’ Theory

4.9 Lie Series, Chow’s Theorem

4.10 Tensor Field

4.11 Riemannian Geometry

4.12 Symplectic Geometry
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chapter 1 Introduction
Exercise 1.1: A mathematical model that describes a wide variety of physical nonlinear systems
is the 𝑛th-order differential equation

𝑦(n) = 𝑔(𝑡, 𝑦, ̇𝑦,…, 𝑦(n-1), 𝑢) (27)

where 𝑢 and 𝑦 are scalar variables. With 𝑢 as input and 𝑦 as output, find a state model.

Solution:

Let 𝑥1 = 𝑦,𝑥2 = 𝑦(1),…,𝑥𝑛 = 𝑦(n-1)

̇𝑥1 = 𝑥2
̇𝑥n-1 = 𝑥𝑛
̇𝑥𝑛 = 𝑔(𝑡, 𝑥1,…, 𝑥𝑛, 𝑢)
𝑦 = 𝑥1

(28)

chapter 2 Second Order Systems

chapter 3 Fundamental Properties
Exercise  3.24 : Let 𝑉 : ℝ × ℝ𝑛 → ℝ be continuously differentiable. Suppose that 𝑉 (𝑡, 0) = 0
for all 𝑡 ≥ 0 and

𝑉 (𝑡, 𝑥) ≥ 𝑐1‖𝑥‖2; ‖
𝜕𝑉
𝜕𝑥
(𝑡, 𝑥)‖ ≤ 𝑐4‖𝑥‖, ∀(𝑡, 𝑥) ∈ [0,∞) ×𝐷 (29)

where 𝑐1 and 𝑐4 are positive constants and 𝐷 ⊂ ℝ𝑛 is a convex domain that contains the origin
𝑥 = 0

1. Show that 𝑉 (𝑡, 𝑥) ≤ 1
2𝑐4‖𝑥‖

2 for all 𝑥 ∈ 𝐷.
Hint: Use the representation 𝑉 (𝑡, 𝑥) = ∫1

0
𝜕𝑉
𝜕𝑥 (𝑡, 𝜎𝑥)𝑑𝜎𝑥

2. Show that the constants 𝑐1 and 𝑥4 must satisfy 2𝑐1 ≤ 𝑐4
3. Show that 𝑊(𝑡, 𝑥) = √𝑉 (𝑡, 𝑥) satisfies the Lipschitz condition

|𝑊(𝑡, 𝑥2) −𝑊(𝑡, 𝑥1)| ≤
𝑐4
2√𝑐1

‖𝑥2 − 𝑥1‖, ∀𝑡 ≥ 0, ∀𝑥1, 𝑥2 ∈ 𝐷 (30)

Solution to 1

𝑉 (𝑡, 𝑥) = ∫
1

0

𝜕𝑉
𝜕𝑉
(𝑡, 𝜎𝑥)𝑑𝑥 ≤ ∫

1

0
‖
𝜕𝑉
𝜕𝑥
(𝑡, 𝜎𝑥)‖‖𝑥‖𝑑𝜎 ≤ ∫

1

0
𝑐4𝜎𝑑𝜎‖𝑥‖

2 ≤
1
2
𝑐4‖𝑥‖

2 (31)

Solution to 2

Since

𝑐1‖𝑥‖
2 ≤ 𝑉 (𝑡, 𝑥) ≤

1
2
𝑐4‖𝑥‖

2, ∀𝑥 ∈ 𝐷 (32)

we must have 𝑐1 ≤ 1
2𝑐4

Solution to 3
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Consider two ponts 𝑥1 and 𝑥2 such that 𝛼𝑥1 + (1 − 𝛼)𝑥2 ≠ 0 for all 0 ≤ 𝛼 ≤ 1; that is, the orgin
does not lie on the line connecting 𝑥1 and 𝑥2. The Jacobian [𝜕𝑊/𝜕𝑥] is defined for every 𝑥 =
𝛼𝑥1 + (1 − 𝛼)𝑥2 and given by

𝜕𝑊
𝜕𝑥
(𝑡, 𝑥) =

1
2√𝑉 (𝑡, 𝑥)

𝜕𝑉
𝜕𝑥
(𝑡, 𝑥) (33)

By the mean value theorem, there is 𝛼∗ ∈ (0, 1) such that, with 𝑧 = 𝛼∗𝑥1 + (1 − 𝛼∗)𝑥2

𝑊(𝑡, 𝑥2) −𝑊(𝑡, 𝑥1) =
𝜕𝑊
𝜕𝑥
(𝑡, 𝑧)(𝑥2 − 𝑥1) =

1
2√𝑉 (𝑡, 𝑧)

𝜕𝑉
𝜕𝑥
(𝑡, 𝑧)(𝑥2 − 𝑥1) (34)

Hence

|𝑊(𝑡, 𝑥2) −𝑊(𝑡, 𝑥1)| ≤
1

2√𝑐1‖𝑧‖
(35)

Consider now the case when the origin lies on the line connecting 𝑥1 and 𝑥2; that is , 0 = 𝛼0𝑥1 +
(1 − 𝛼0)𝑥2 for some 𝛼0 ∈ [0, 1]. We have

|𝑊(𝑡, 𝑥2) −𝑊(𝑡, 0)| = |𝑊(𝑡, 𝑥2)| = √𝑉 (𝑡, 𝑥2) ≤ √
𝑐4
2
‖𝑥2‖

|𝑊(𝑡, 𝑥1) −𝑊(𝑡, 0)| = |𝑊(𝑡, 𝑥1)| = √𝑉 (𝑡, 𝑥1) ≤ √
𝑐4
2
‖𝑥1‖

|𝑊(𝑡, 𝑥2) −𝑊(𝑡, 𝑥1)| = |𝑊(𝑡, 𝑥2) −𝑊(𝑡, 0) +𝑊(𝑡, 0) −𝑊(𝑡, 𝑥1)| ≤ √
𝑐4
2
(‖𝑥1‖ + ‖𝑥2‖)

(36)

Since the origin lies on the line connecting 𝑥1 and 𝑥2, we have ‖𝑥2‖ + ‖𝑥1‖ = ‖𝑥2 − 𝑥1‖. We also
have 1 ≤ √𝑐4/2𝑐1. Therefore,

|𝑊(𝑡, 𝑥2) −𝑊(𝑡, 𝑥1)| ≤
𝑐4
2√𝑐1

‖𝑥2 − 𝑥1‖ (37)

chapter 4 Lyapunov Stability

chapter 5 Input-Output Stability
Exercise 5.6: Verify that 𝐷+𝑊(𝑡) satisfies (38)(5.12 in textbook) when 𝑉 (𝑡, 𝑥(𝑡)) = 0.

𝐷+𝑊 ≤
𝑐4𝐿
2√𝑐1

‖𝑢(𝑡)‖ (38)

Hint: Using Exercise 3.24, show that

𝑉 (𝑡 + ℎ, 𝑥(𝑡 + ℎ)) ≤ 𝑐4ℎ2𝐿2‖𝑢‖
2/2 + ℎ𝑜(ℎ) (39)

where 𝑜(ℎ)ℎ → 0 as ℎ → 0. Then apply 𝑐4 ≥ 2𝑐1

From textbook, the system is

̇𝑥 = 𝑓(𝑡, 𝑥, 𝑢), 𝑥(0) = 𝑥0
𝑦 = ℎ(𝑡, 𝑥, 𝑢)

(40)
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From 𝑉 (𝑡, 𝑥(𝑡)) = 0 and (32), we have 𝑥(𝑡) = 0

Let 𝑉 (𝑡, 𝑥(𝑡)) = 0.

𝐷+𝑊 = lim sup
ℎ→0+

1
ℎ
[𝑊(𝑡 + ℎ, 𝑥(𝑡 + ℎ)) −𝑊(𝑡, 𝑥(𝑡))]

= lim sup
ℎ→0+

1
ℎ
√𝑉 (𝑡 + ℎ, 𝑥(𝑡 + ℎ))

(41)

From (32), We have

𝑉 (𝑡 + ℎ, 𝑥(𝑡 + ℎ)) ≤
𝑐4
2
‖𝑥(𝑡 + ℎ)‖2 (42)

From textbook 5.9, we have

‖𝑓(𝑡, 𝑥(𝑡), 𝑢) − 𝑓(𝑡, 𝑥(𝑡), 0)‖ ≤ 𝐿‖𝑢‖ (43)

Use Taylor Series:

𝑥(𝑡 + ℎ) = 𝑓(𝑡, 𝑥, 𝑢)ℎ + 𝑜(ℎ)

⇨ ‖𝑥(𝑡 + ℎ)‖2≤ (‖𝑓(𝑡, 𝑥, 𝑢)‖ℎ + ‖𝑜(ℎ)‖)2
(44)

1
ℎ2
𝑉 (𝑡 + ℎ, 𝑥(𝑡 + ℎ)) ≤

𝑐4
2
(
‖𝑥(𝑡 + ℎ)‖

ℎ
)
2

≤
𝑐4
2
(‖𝑓(𝑡, 𝑥, 𝑢)‖ +

‖𝑜(ℎ)‖
ℎ

)
2

(45)

lim sup
ℎ→0+

1
ℎ
√𝑉 (𝑡 + ℎ, 𝑥(𝑡 + ℎ)) ≤ √

𝑐4
2
‖𝑓(𝑡, 𝑥, 𝑢)‖ ≤ √

𝑐4
2
𝐿‖𝑢‖ (46)

since √𝑐4/(2𝑐1) ≥ 1. Thus

𝐷+𝑊 ≤√
𝑐4
2
𝐿‖𝑢‖√𝑐4/(2𝑐1) =

𝑐4𝐿
2√𝑐1

‖𝑢(𝑡)‖ (47)

which agrees with the right hand side of (38)

chapter 6 Passivity

chapter 7 Frequency Domain analysis of Feedback Systems

chapter 8 Advanced Stability Analysis

chapter 9 Stability of Perturbed Systems

chapter 10 Perturbation Theory and Averaging

chapter 11 Singular Perturbations

chapter 12 Feedback Control

chapter 13 Feedback Linearization

chapter 14 Nonlinear Design Tools
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