State Feedback Observer Design Example

pdf version NJUPT <Modern Control Theory> P131

Question5.7

Consider the following transfer function:
z=[1 2];
p=[-1 2 -3];
G1=zpk(z,p,1)
G1 = (s-1) (s-2) ----------------- (s+1) (s+3) (s-2) Continuous-time zero/pole/gain model.
Gt=zpk(1,[-2 -3],1)
Gt = (s-1) ----------- (s+2) (s+3) Continuous-time zero/pole/gain model.
Is it possible to transform G1 to Gt using state feedback control?

solution

step1. Controlable?

[A,B,C,D]=zp2ss(z,p,1);
Qc=ctrb(A,B);
Qo=obsv(A,C);
if rank(Qc)>=size(A,2)
disp('Controlable, so can design state feedback control')
else
disp('Uncontrolable')
end
Controlable, so can design state feedback control
if rank(Qo)>=size(A,2)
disp('Observable,so can design output feedback control');
else
disp('Unobservable');
end
Unobservable

step2. pole placement

P=[2 -2 -3];
K=acker(A,B,P)
K = 1×3
1.0000 -3.0000 -5.1962

step3. state feedback observer system

A2=A-B*K;
% G2ss=ss(A2,B,C,0);
[z2,p2]=ss2zp(A2,B,C,0);
G2=zpk(z2,p2,1)
G2 = (s-2) (s-1) ----------------- (s-2) (s+2) (s+3) Continuous-time zero/pole/gain model.