串联超前校正
G1=tf(10,[1 0]);
G2=tf(2,[0.2 1]);
H=1;
1.计算串联校正装置的传递函数 Gc(s)和校正网络参数。
a=11;
%分度系数
T=0.005;
%时间常数
Gc=tf([a*T 1],[T a]);
% Gc1=tf(1,2);
% Gc2=tf(2*[0.055 1],[0.005 1]);
% Gc00=series(Gc1,Gc2);
sprintf(
"校正网络参数a=%g,T=%g"
,a,T);
display(Gc);
Gc = 0.055 s + 1 ------------ 0.005 s + 11 Continuous-time transfer function.
2.画出校正后系统的对数坐标图,并求出校正后系统的ω′c及ν′。
G_ori=series(G1,G2);
G_corr=series(Gc,G_ori);
figure();
bode(G_ori,G_corr,Gc);grid;
legend(
'校正前'
,
'校正后'
,
'校正环节'
);title(
'校正前后开环传递函数伯德图'
);
[Gm_ori,Pm_ori] = margin(G_ori);
%Gm: gain margin幅值裕度,单位为一
[Gm_corr,Pm_corr] = margin(G_corr);
%Pm: phase margin相角裕度
info1=sprintf(
"校正前:幅值裕度:%g,相角裕度:%g"
,Gm_ori,Pm_ori);
info2=sprintf(
"校正后:幅值裕度:%g,相角裕度:%g"
,Gm_corr,Pm_corr);
display([info1,info2]);
1×2 string 数组 "校正前:幅值裕度:Inf,相角裕度:28.0243" "校正后:幅值裕度:Inf,相角裕度:76.3307"
3.比较校正前后系统的阶跃响应曲线及性能指标,说明校正装置的作用。
Phi_ori=feedback(G_ori,H);
Phi_corr=feedback(G_corr,H);
figure();
stepplot(Phi_ori,Phi_corr);
legend(
'校正前'
,
'校正后'
);title(
'串联超前校正前后闭环传递函数阶跃响应'
);
info_ori=stepinfo(Phi_ori);
info_corr=stepinfo(Phi_corr);
struct2table([info_ori,info_corr])
ans =
2×8 table
RiseTime
SettlingTime
SettlingMin
SettlingMax
Overshoot
Undershoot
Peak
PeakTime
1
0.1269
1.4116
0.8027
1.4432
44.3235
0
1.4432
0.3316
2
0.9636
1.5402
0.9003
1.0010
0.0964
0
1.0010
2.4630